Morti
Администратор
- 13 Янв 2014
- 147.403
- 27.320
MACHINE LEARNING ДЛЯ НАЧИНАЮЩИХ [KARPOV.COURSES] 3 Часть
Всё про самую увлекательную профессию 21 века: от сбора данных до оценки эффекта от моделей машинного обучения
ЧЕМ ЗАНИМАЮТСЯ ML-ИНЖЕНЕРЫ:
В современном мире бизнес сталкивается со многими проблемами, которые требуют неординарных решений. Например, как идентифицировать клиентов, которые хотят уйти, и сохранить их с помощью ценовых факторов?
Работа ML-инженера заключается в решении подобного рода задач и создании систем, которые работают лучше и быстрее, чем решения, сделанные простым человеком.
ДЛЯ КОГО ЭТА ПРОГРАММА:
УЖЕ РАБОТАЕТЕ В IT
Вы уже работаете в IT, но хотите перейти в новую сферу или расширить свои знания и навыки, чтобы применить их в различных областях машинного обучения.
СТАРТ КАРЬЕРЫ
Хотите изучить машинное обучение, но не знаете, с чего начать. Курс научит вас необходимой математической базе для работы в ML и даст навыки для старта карьеры.
ПРОГРАММА КУРСА ://
1. ПРИКЛАДНАЯ РАЗРАБОТКА НА PYTHON
Python — один из самых популярных инструментов для анализа данных. В этом блоке мы научимся работать с этим языком, познакомимся с основными библиотеками для ML и узнаем, как грамотно использовать Python при командной работе. Также мы посвятим время изучению инструментов для работы с базами данных, как с помощью классического SQL, так и с помощью Python кода. Полученных знаний будет достаточно для работы не только в области анализа данных, но и в классической разработке на Python.
2. МАШИННОЕ ОБУЧЕНИЕ И ПРИЛОЖЕНИЯ
Классические методы машинного обучения — это основа для большинства современных способов анализа данных, например, для оптимизации банковского ценообразования. Мы изучим основной теоретический инструментарий для успешного построения ML-дизайна в острых проблемах реальной индустрии и отточим новые навыки на практике.
3. ОБЗОР ОСНОВ DEEP LEARNING
Глубинное обучение с использованием нейронных сетей появляется тогда, когда классические модели бессильны: детекция объектов с картинки, генерация осмысленного текста, определение тональности звуковой дорожки и многое другое. В данном курсе мы обзорно посмотрим на решения, которые можно сделать с помощью deep learning, и попробуем в них разобраться.
4. СТАТИСТИКА И A/B-ТЕСТЫ
В этом блоке мы изучим основные понятия математической статистики, необходимые для улучшения моделей. Научимся правильно проводить A/B тестирование, чтобы достоверно измерять влияние внедрения ML моделей на продукт и бизнес. Обсудим нюансы при проведении экспериментов и способы оценки метрик при невозможности проведения A/B-теста.
5. СОБЕСЕДОВАНИЯ И КАК ИХ ПРОЙТИ
В последнем блоке курса мы еще раз вспомним основные моменты из всего курса и обсудим, как проходят собеседования на младшего специалиста в машинном обучении, как к ним готовиться и как их проходить. Мы хотим поделиться своим опытом и помочь пройти первый этап в поиске профессии мечты.
Продажник
СКАЧАТЬ ПО ССЫЛКЕ НИЖЕ
Всё про самую увлекательную профессию 21 века: от сбора данных до оценки эффекта от моделей машинного обучения
ЧЕМ ЗАНИМАЮТСЯ ML-ИНЖЕНЕРЫ:
В современном мире бизнес сталкивается со многими проблемами, которые требуют неординарных решений. Например, как идентифицировать клиентов, которые хотят уйти, и сохранить их с помощью ценовых факторов?
Работа ML-инженера заключается в решении подобного рода задач и создании систем, которые работают лучше и быстрее, чем решения, сделанные простым человеком.
ДЛЯ КОГО ЭТА ПРОГРАММА:
УЖЕ РАБОТАЕТЕ В IT
Вы уже работаете в IT, но хотите перейти в новую сферу или расширить свои знания и навыки, чтобы применить их в различных областях машинного обучения.
СТАРТ КАРЬЕРЫ
Хотите изучить машинное обучение, но не знаете, с чего начать. Курс научит вас необходимой математической базе для работы в ML и даст навыки для старта карьеры.
ПРОГРАММА КУРСА ://
1. ПРИКЛАДНАЯ РАЗРАБОТКА НА PYTHON
Python — один из самых популярных инструментов для анализа данных. В этом блоке мы научимся работать с этим языком, познакомимся с основными библиотеками для ML и узнаем, как грамотно использовать Python при командной работе. Также мы посвятим время изучению инструментов для работы с базами данных, как с помощью классического SQL, так и с помощью Python кода. Полученных знаний будет достаточно для работы не только в области анализа данных, но и в классической разработке на Python.
2. МАШИННОЕ ОБУЧЕНИЕ И ПРИЛОЖЕНИЯ
Классические методы машинного обучения — это основа для большинства современных способов анализа данных, например, для оптимизации банковского ценообразования. Мы изучим основной теоретический инструментарий для успешного построения ML-дизайна в острых проблемах реальной индустрии и отточим новые навыки на практике.
3. ОБЗОР ОСНОВ DEEP LEARNING
Глубинное обучение с использованием нейронных сетей появляется тогда, когда классические модели бессильны: детекция объектов с картинки, генерация осмысленного текста, определение тональности звуковой дорожки и многое другое. В данном курсе мы обзорно посмотрим на решения, которые можно сделать с помощью deep learning, и попробуем в них разобраться.
4. СТАТИСТИКА И A/B-ТЕСТЫ
В этом блоке мы изучим основные понятия математической статистики, необходимые для улучшения моделей. Научимся правильно проводить A/B тестирование, чтобы достоверно измерять влияние внедрения ML моделей на продукт и бизнес. Обсудим нюансы при проведении экспериментов и способы оценки метрик при невозможности проведения A/B-теста.
5. СОБЕСЕДОВАНИЯ И КАК ИХ ПРОЙТИ
В последнем блоке курса мы еще раз вспомним основные моменты из всего курса и обсудим, как проходят собеседования на младшего специалиста в машинном обучении, как к ним готовиться и как их проходить. Мы хотим поделиться своим опытом и помочь пройти первый этап в поиске профессии мечты.
Продажник
Вам необходимо зарегистрироваться на сайте для просмотра скрытых ссылок
СКАЧАТЬ ПО ССЫЛКЕ НИЖЕ
Для просмотра скрытого содержимого вы должны зарегистрироваться
Последнее редактирование модератором:
Возможно, Вас ещё заинтересует:
- Кодекс успеха 21-го века. Путь самореализации через 24 правила личного и профессионального роста [Максим Милёшин]
- Как использовать энергии нового года с Цзы Вэй Доу Шу [Тариф Стандарт] [Наталья Титова]
- Подписка на аналитические материалы thewallstreet.pro (январь 2025) [Дмитрий Черёмушкин]
- Шерлок Холмс и данные. Детективный метод анализа информации [Николай Сорокин]
- Как привлекать клиентов через рекламу Instagram, Facebook с ИИ [Maxim Tulba]
- О, мой год - рабочая тетрадь на 2026 [Ольга Килина]
- Клуб Мир больших денег (ноябрь 2025) [Азат Валиев]
- Как научиться учиться. Секреты эффективной учебы [Герасим Авшарян]
- [Аудиокнига] Руководство по выживанию среди людей. 96 коммуникативных приемов на все случаи жизни [Игорь Рызов, Ксения Кравцова]
- [ДМК] Python для профи: интерпретаторы, эмуляторы, графика и машинное обучение [Копек Д.]